
12 Ways to Fool the Masses: 
Fast Forward to 2011 

David H. Bailey 
Lawrence Berkeley National Laboratory 

http://crd.lbl.gov/~dhbailey 



Example from Physics: 
Measurements of Speed of Light 

Why the discrepancy between pre-1945 and post-1945 values?  Probably 
due to biases and sloppy experimental methods. 



Example from Psychology:  
The “Blank Slate” 

The “blank slate” paradigm (1920-1975): 
  The human mind at birth is a “blank slate.” 
  Heredity and biology play no significant role in human psychology – all 

personality and behavioral traits are socially constructed. 

Current consensus, based on latest research: 
  Humans at birth universally possess sophisticated facilities for social 

interaction, language acquisition, pattern recognition, navigation, etc. 
  Heredity, evolution and biology are major factors in human personality -- 

some personality traits are more than 50% heritable. 
How did the early 20th century scientists get it so wrong? 
  Sloppy experimental methodology and analysis. 
  Pervasive wishful thinking and “politically correct” biases. 

Ref: Steven Pinker, The Blank Slate: The Modern Denial of Human Nature 



Example from Anthropology: 
The “Noble Savage” 

Anthropologists, beginning with Margaret Mead in the 1930s, painted 
an idyllic picture of primitive societies (e.g., Pacific Islanders): 

  Virtually no violence, jealousy or warfare. 
  Happy, uninhibited – few of the psychological or social problems that 

afflict much of Western society. 
Beginning in the 1970s, a new generation of anthropologists revisited 

these societies and did more careful studies.  They found: 
  Crime rates higher than most U.S. and European cities. 
  Death rates from inter-tribe conflicts typically exceeding those of warfare 

among Western nations by factors of 10 or more. 
  Complex, jealous taboos surrounding courtship and marriage: 

◊  Violent reprisals were condoned in cases of adultery or non-virgin brides. 
◊  Ornamentation worn by males of one tribe, earlier thought to be signs of 

male-female role reversal, were actually honor badges from warfare. 
Conclusion:  Some advantages, but hardly the Garden of Eden as 

earlier depicted.   
Why so many errors?  “Anthropological malpractice” – Pinker. 



Lessons From History 

  Research must be based on solid empirical tests and careful, 
objective analysis of data. 

  Researchers must be willing to provide all details of the 
experimental environment, so others can reproduce their results. 

  Rigorous peer review is essential. 
  Good intentions or “politically correct” conclusions are no excuses 

for poor scholarship. 
  Erudite technical terminology and mathematical formulas are no 

substitutes for sound reasoning. 
  Hype has no place in the scientific enterprise. 
  High standards of honesty and rigor must be vigilantly enforced. 



History of Parallel Computing 

  1976-1986:  Initial research studies and demonstrations. 
  1986-1990:  First large-scale systems deployed. 
  1990-1994:  Shoddy measurements and questionable performance 

claims; faults generally ignored. 
  1994-1998:  Numerous firms failed; government agencies cut funds. 
  1998-2002:  Reassessment. 
  2002-2009:  Recovery.  
  2010:  1 Pflop/s (1015 floating-point operations per second) demonstrated 

on a few large scientific computations. 
  2011:  Hetergeneous architectures introduced; researchers and 

government agencies set sights on exascale computing. 

Have lessons been learned?  Or are we slipping into hype and sloppiness? 



Parallel System Performance 
Practices, circa 1993 

  Performance results on small-sized parallel systems were linearly 
scaled to full-sized systems. 
◊  Example:  8,192-CPU results were linearly scaled to 65,536-CPU results, 

simply by multiplying by eight. 
◊  Rationale: “We can’t afford a full-sized system.” 
◊  Sometimes this was done without any clear disclosure in the paper or 

presentation. 



Parallel System Performance 
Practices, circa 1993 

  Highly tuned parallel implementations were compared with 
untuned implementations on other systems. 
◊  In comparisons of distributed memory systems with vector systems, 

often little or no effort was made to tune the vector code. 
◊  This was the case even for comparisons between SIMD parallel 

systems and vector systems -- here the SIMD code could have 
been converted rather easily to efficient vector code, but typically 
this was not done. 



Parallel System Performance 
Practices, circa 1993 

  Inefficient algorithms were employed, requiring many more 
operations, which resulted in artificially high Mflop/s rates. 
◊  Some scientists employed explicit PDE schemes for applications 

where implicit schemes were known to be much better. 
◊  One paper described doing a 3D discrete Fourier transform by direct 

evaluation of the defining formula, rather than by using a fast Fourier 
transform (i.e., 8n2 operations rather than 5n log2n, where n is the 
total number of points). 



Parallel System Performance 
Practices, circa 1993 

  Performance rates on 32-bit floating-point data on one system 
were compared with rates on 64-bit data on another system. 
◊  Using 32-bit data instead of 64-bit data effectively doubles data 

bandwidth, thus yielding artificially high performance rates. 
◊  Some computations can be done safely with 32-bit floating-point 

arithmetic, but many cannot. 
◊  In some emerging applications, even 64-bit (15-digit) floating-point 

arithmetic is not enough – many more digits are required. 



Parallel System Performance 
Practices, circa 1993 

  In some cases, performance experiments claimed in published papers 
were not actually performed.  Example: 
◊  Abstract of published paper:   

 “The current Connection Machine implementation runs at 300-800 Mflop/s 
on a full [64K] CM-2, or at the speed of a single processor of a Cray-2 on 
1/4 of a CM-2.” 

◊  Excerpt from text: 
 “This computation requires 568 iterations (taking 272 seconds) on a 16K 
Connection Machine.” 

 In other words, the computation was run on a 16K system, not on a 64K 
system.  The figures cited in the abstract were multiplied by four. 

◊  Another excerpt from text: 
 “In contrast, a Convex C210 requires 909 seconds to compute this 
example.  Experience indicates that for a wide range of problems, a C210 is 
about 1/4 the speed of a single processor Cray-2, …” 

 In other words, the comparison computation mentioned in the abstract was 
not actually run on a Cray-2.  Instead, it was run on a Convex system, and a 
questionable scaling factor was used to produce the Cray-2 rate. 



Performance Plot A 

0

0.5

1

1.5

2

2.5

3

3.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Objects

T
im

e 
(H

o
u

rs
)



Data for Plot A 

Problem size   Parallel system   Vector system 
(x axis)    run time   run time 
    20        8:18          0:16 
    40        9:11          0:26 
    80      11:59          0:57 
  160      15:07          2:11 
  990      21:32        19:00 
9600      31:36     3:11:50* 

Details in text of paper: 
  In last entry, the 3:11:50 figure is an “estimate.” 
  The vector system code is “not optimized.” 

Note that the vector system performance is better in each run, except for 
the last (estimated) entry. 



Performance Plot B 

10-1

100

101

102

103

103 104 105 106 107

Number of Grid Cells

C
P

U
 S

ec
o
n
d
s 

p
er

 I
te

ra
ti

o
n



Facts for Plot B 

  32-bit performance rates on a parallel system are compared 
with 64-bit performance on a vector system. 

  Parallel system results are linearly extrapolated to a full-sized 
system from a small system (only 1/8 size).   

  The vector version of code is “unvectorized.” 
  The vector system “curves” are straight lines – i.e., they are 

linear extrapolations from a single data point.   

Only a handful of the points in these graphs clearly represent real 
timings. 



Parallel System Performance 
Practices, circa 1993 

  The examples in my files were written by professional scientists, and 
most were published in peer-reviewed journals and conference 
proceedings. 

  One example is from an award-winning paper. 
  In some cases, researchers accepted free computer time or other 

benefits from vendors, but did not disclose this fact in their papers. 



Twelve Ways to Fool the Masses 
(1991) 

1.  Quote only 32-bit performance results, not 64-bit results. 
2.  Present performance figures for an inner kernel, and then represent these figures 

as the performance of the entire application. 
3.  Quietly employ assembly code and other low-level language constructs. 
4.  Scale up the problem size with the number of processors, but omit any mention of 

this fact. 
5.  Quote performance results projected to a full system. 
6.  Compare your results against scalar, unoptimized code on conventional systems. 
7.  When direct run time comparisons are required, compare with an old code on an 

obsolete system. 
8.  If Mflop/s rates must be quoted, base the operation count on the parallel 

implementation, not on the best sequential implementation. 
9.  Quote performance in terms of processor utilization, parallel speedups or Mflop/s 

per dollar. 
10.  Mutilate the algorithm used in the parallel implementation to match the 

architecture. 
11.  Measure parallel run times on a dedicated system, but measure conventional run 

times in a busy environment. 
12.  If all else fails, show pretty pictures and animated videos, and don't talk about 

performance. 



New York Times, 22 Sept 1991 



Excerpts from NY Times Article 

“Rival supercomputer and work station manufacturers are prone to 
hype, choosing the performance figures that make their own 
systems look better.” 

“It’s not really to the point of widespread fraud, but if people aren’t 
somewhat more circumspect, it could give the field a bad 
name.” 



Fast Forward to 2011:  
Five New Ways to Fool the Masses 

1.  Cite performance rates for a run with only one processor core 
active in a shared-memory multi-core node.  For example, cite  
performance on 1024 cores, even though the code was run on 
1024 nodes, wasting 15 out of 16 cores on each node. 

2.  Cite performance rates only for a core algorithms (such as FFT or 
LU decomposition), even though the paper mentions one or more 
full-scale applications that were done on the system. 

3.  List only the best performance figure in the paper, even though the 
run was made numerous times. 

4.  Employ special hardware, operating system or compiler settings 
that are not appropriate for real-world usage. 

5.  Define “scalability” as successful execution on a large number of 
CPUs, regardless of performance. 



Benchmarks Help Prevent Abuse 

  Benchmark tests must be well-designed, rigorous and scalable. 
  Benchmark codes are problematic, because architectures and 

languages change, but “reference implementations” are useful. 
  Well-thought-out and well-enforced “ground rules” are essential. 
  A rational scheme must be provided for calculating performance 

rates. 
  Tests must be specified to validate the correctness of the results. 
  A repository of results must be maintained. 

Examples:  
  The NAS Parallel Benchmarks (still useful, but a bit dated).  
  The LBNL-UCB “Torch” Reference Kernels (also known as the 

“Dwarfs” or “Motifs”).  See: 
 http://crd.lbl.gov/~dhbailey/dhbpapers/dwarfs09_intro.pdf 



General Guidelines to Prevent Abuse 

  Direct comparisons of run times on real applications are preferred. 
  If results are presented for a well-known benchmark, established ground rules 

must be followed. 
  Only actual performance results should be presented, not projections or 

extrapolations (unless very clearly disclosed and justified). 
  Performance figures should be based on comparable levels of tuning. 
  Mflop/s, Gflop/s, Tflop/s rates should be computed from operation counts 

based on the best practical serial algorithms. 
  When computing parallel speedup figures, the denominator rate should be 

based on an efficient single-processor implementation. 
  Any ancillary information that would affect the interpretation of the results 

should be fully disclosed (e.g., the use of 32-bit instead of 64-bit data, etc.). 
  Special care should be taken for figures and graphs. 
  Whenever possible, full background information should be provided: 

algorithms, hardware and software configuration, language, compiler flags, 
tuning, timing method, basis for operation counts, etc. 


